挑战极限——深入解析机箱最大容纳
● 公式及推导过程的现实意义
公式本身的推导和计算也许是很枯燥乏味的,这些公式到底有什么现实的意义呢?我想这应该是更多人关心和想了解的东西。
不少朋友会遇见刚装好的机器却频繁死机的现象,在更换电源后故障排除。不仅仅是因为好的电源能够提供足够的功率,还有一部分原因是好的电源的排风量足够散出所提供功率消耗的热量。现有的大部分机箱是主要通过电源风扇进行散热的,假如一款电源能够提供400W的实在功率,而电源风扇常温下最多只能排出300W功率所消耗的热量,那么这个电源的设计对于普通机箱就是不合理的。
对使用普通机箱的用户来说,花了400W电源的钱,只用到了300W,后100W会造成系统温度过高,是没机会用到的。除非用户自己动手进行改造机箱或电源才能发挥出这款电源的威力。但这对很多连机箱都不敢拆拆的用户来说就是勉为其难了。而知道了排风量和最大功率的关系,我们就可以事先避免这种情况。
夏天的天气温度升高,能否安然度过这个夏季,也可以通过计算了解大致情况,事先做好准备。
通过这些公式我们还可以很容易找到解决功耗增长和机箱温度增长所造成的矛盾的办法,甚至于可以推论出未来机箱制造的发展方向。
根据计算机各配件总功率是增加的趋势,可以预见未来可能出现的几种解决办案(完全不负责任之畅想):
1、增加机箱的排风量V/t将是简单易行之法。
以后的电源风扇可能会增加转速,或者风扇直径。但噪音同样是电源风扇一个重要指标,人们对噪音的容忍是有限度的。受限于噪音和机箱体积,电源可能采用新技术风扇,如外磁式等。或者以后多数机箱会配备一个或者以上个数的辅助散热风扇,来增大排风量。
大口径风扇机箱
多个散热风扇的机箱
2、提高机箱内硬件最高承受温度值Tmax,来使ΔT增加,需要科技力量。
当人们不能忍受过多机箱风扇的噪音时,未来的硬件可能会逐渐提高最高温度值,不耐热产品将被淘汰。但是这是很有代价的,甚至可能需要硬件从根本上进行变革。例如要使硬盘在60℃以上工作,在技术和成本上短期内是不现实的。如果以后的硬盘改变存储方式,不采用磁记录或者精密机械结构,而是类似于内存一样采用硅芯片存储,通过加散热片或者风扇,就可以提升最高允许温度。代价就是必须投入大量研发成本,解决如去电后存储信息丢失、超大容量设计等技术问题。
3、可减少机箱内所有硬件总功率,从而对最高允许功率Pmax的要求减小。可以改变风道或利用特殊设备将热量直接带出机箱外部。
虽然CPU,显卡,内存等等几乎所有硬件的功率都在上升,但是如果把CPU或显卡等发热大户释放的热量直接排出机箱,将有效降低箱内硬件总功率。这样做实际上机箱设计不变,而是减少了对最大允许功率Pmax的要求,从而降低了对温度和排风量的要求。
直接将热量排出机箱的显卡
压缩机直接将CPU热量排出机箱
4、利用制冷装置强制降低环境温度T,来增加ΔT。
比如给房间安装空调,或者给机箱配备专门设备吹入低温空气。可谓兴师动众,以消耗更多的能量(最终转化为热量)方式制冷来抑制计算机的热量,这种做法相当之不环保。
5、把不耐热硬件(如硬盘)放置在和机箱内空气不进行热交换的空间里,或者直接安放在机箱之外。这样做对总功率值影响不大,但有效提高了机箱内硬件的最高允许温度Tmax。以后甚至可能出现如下图所示的机箱:
6、改变布局和风道,让需要环境温度低的硬件安排在入风口处,提高机箱内允许温度Tmax值。
Intel提出的BTX机箱,就是基于这样一个思路设计,因为现在的intel的部分CPU温度已经超过100W,对环境温度、主板供电、甚至插座形式都有了特殊要求,对机箱结构的改变也更显得迫不及待。BTX设计示意图如下:
BTX机箱结构示意图
BTX机箱风道示意图
从图中可以看到,在BTX设计当中,冷空气进入以后,首要收益者成了CPU,而不再是硬盘。冷空气在经过CPU这个热量最大户之后温度会升高很多,经过CPU以后的空气就已经温度比较高了。比较热的空气流经显卡(机箱内发热第二大户),会使显卡制造商在设计显卡时考虑到更恶劣的环境,配备更好的散热系统。
而硬盘——在ATX机箱中的首要受益者——被安置在CPU的上方, 因为热空气向上升,工作环境会较ATX中恶劣,同样会使硬盘制造商在设计产品的时候需要考虑到更坏的工作状况。就目前来讲,可能是Intel考虑到其它硬件产品的功耗问题还有温度升高的余地,而CPU的热量问题已经刻不容缓,BTX算是解决当前最紧要问题的一种应急方案吧。但从本质上说,BTX是一种风险转嫁的设计,不利于其它硬件(如显卡)的高速发展。<