泡泡网显卡频道 PCPOP首页      /      显卡     /      评测    /    正文

开启游戏画质新时代 NVIDIA RTX 2080/2080Ti显卡首发评测

    前文我们说到,RT Cores占用了很大的核心面积,而这些单元并不会提升传统的光栅渲染效能。他们的用途要比单独提升游戏的FPS值更有价值。基于这些单元,NVIDIA在这一代显卡产品中加入了酝酿多年的“实时光线追踪”(RTX)技术。这也是为什么这一代显卡产品的命名从“GTX”变成“RTX”的原因。

光线追踪与实时光线追踪


    传统的光栅化渲染其实将一个3D图形的几何信息转变为一个个栅格组成的2D图像的过程,可以理解为在这个3D图形的每个点都包含有颜色、深度以及纹理数据,经过一系列计算变换后,将其转换为2D图像的像素,进而呈现在显示设备上。更多的是一种基于作者认为“这里应该有这个”的创作性质的图形渲染方式,一定以上来说就是已知结果并把结果写出来,而并不能知道这个结果是正确的还是错误的。

    而光线追踪技术则是通过通过光源位置、射线、和物体关系进行真实的光线模拟运算,来得出这里应该有哪些光线,有怎样的反射关系。这样得出的游戏画面的光影效果也就更加真实。

    光线追踪在以往游戏中的应用都是在游戏的制作中提前进行运算,将得出的结果写到游戏程序中,显卡所做的也仅仅是将已经写好的“台词”念出来。这样的做法意味着无法实现大量且精细的光线追踪,那将意味着海量的计算过程和无比巨大的供调用的结果数据。

    而“实时光线追踪”就是将光线追踪的运算过程拿到游戏过程中来,实时地计算出光线应该投影和反射形成的效果。如果性能足够强大,不仅可以在同样的场景中做到更高数量级的光线追踪效果,游戏画面可以得到显著的提高,还能大幅度降低游戏开发者的运算量。

    如果把图形渲染比喻成一场数学考试,那么光栅化渲染基本上约等于不会做题目所有的选项都靠“三短一长选最长”的直觉来回答;而“光线追踪”则是将尽可能多的题目死记硬背,靠题海战术来完成答卷;而“实时光线追踪”(RTX)技术则是将做题的方式学会,通过聪明的大脑来运算解决遇到的每一个题目。这样毫无疑问,最后一种方式所得到的分数必然要远胜前两者。

    落实到游戏的话,目前支持光线追踪的游戏并不多,近期《古墓丽影:暗影》虽然已经承诺支持,但并未在首发版本中加入。而另一款NVIDIA演示的RTX游戏《战地V》也延期上市。所以目前还不能玩到支持实时光线追踪技术的游戏。但是相信不久的将来,在NVIDIA的推动下,会有更多的支持RTX技术的游戏来到我们面前。

靠“脑补”的DLSS技术


    科隆发布会上占据时长同样多的还有全新的基于AI人工智能技术的“深度学习超级采样”(DLSS)技术。这也是图灵GPU核心中的那些Tensor Core的用途所在。

    原理是这样的,NVIDIA 使用自己的超级计算机以64 倍于标准分辨率的分辨率运行游戏,绘制出极多的超高画质的画面,再用一定的方式挑选出一些细分画面作为完美渲染的“标准答案”。然后通过DLSS深度学习,将标准分辨率的画面和这些画面进行对比,生成一张最优画面,然后再与全尺寸(64倍超采样)进行对比,得出差别,然后将这些差别反推到神经网络中,进行循环训练。在几轮之后就人工智能网络就可以学会如何将标准画面渲染到接近64倍分辨率原图的方法。

    这些学习结果定期通过软件更新提供给图灵GPU的显卡,通过Tensor Cores,就可以进行实时比对,将较低分辨率的画面“脑补”为正确的高分辨率画面,从而实现画面细节的提升。超采样也消灭了画面中可能存在的锯齿。

    最终的效果就是,要得出一个4K分辨率的高画质反锯齿画面,通过DLSS技术并不需要真的在4K分辨率下渲染画面,实际渲染一个低分辨率画面,通过DLSS技术即可达到需要的效果。这样不仅画质有所保证,还可以大幅度降低游戏的性能需求,游戏的运行效率将大幅度提升。

    虽然效率提升,但画质方面却并不会因为DLSS技术而受到损失,相反的,相比TAA(时间性反锯齿),DLSS技术大量的机器学习可以避免拖影和细节错位,从而获得更好的反锯齿效果。

    相比需要更深度技术基础的实时光线追踪而言,DLSS更加容易实现,所以很多现有的游戏很快就可以经过NVIDIA的运算后支持DLSS技术,运行效率,尤其是4K下的性能会显著提升。目前NVIDIA承诺的DLSS技术游戏包括《绝地求生》《古墓丽影:暗影》《剑侠情缘三》等众多我们熟悉的作品。

    不过由于需要硬件层面的支持,DLSS技术也是图灵架构GPU的专属功能。后续的基准测试中,我们会有针对DLSS技术的实测数据。

1人已赞

关注我们

泡泡网

手机扫码关注