泡泡网显卡频道 PCPOP首页      /      显卡     /      评测    /    正文

革命性DX11架构!GTX480/470权威评测

第四章/第八节 GF100架构解析:光栅单元与高倍抗锯齿

    从HD4000时代开始,ATI改进ROP单元设计之后抗锯齿效能大增,在标准的4xMSAA模式下已经与N卡不相上下,而在最高的8xMSAA模式下大幅领先于N卡。NVIDIA虽然提供了比较巧妙的高精度CSAA模式,但画质方面还是比不上正统的MSAA,基于8xMSAA的更高级别8xQ AA与16xQ AA也毫无用武之地,因为N卡的8xMSAA效能偏低。

    为了一雪前耻,NVIDIA在GF100当中重新设计了ROP单元(后端渲染单元,俗称光栅单元)。主要是大幅提升了数据吞吐量与效率,上页介绍过GF100的L2已经不再与ROP及显存控制器绑定在一起,而且是全局共享的,因此存取效能与带宽大幅提升。

    GF100的每个ROPs包括8个ROP单元,比GT200翻了一倍。这8个ROP单元可在一个时钟周期类输出8个32bit整数像素、4个16bit浮点像素或2个32bit浮点像素。原子指令性能也得到了大幅提升,相同地址的原子操作执行速度最高可达GT200的20倍,邻近存储区的操作执行速度最高可达7.5倍。

    在GF100上,由于压缩效率的提升以及更多ROP单元能够更有效地渲染这些无法被压缩的较小基元,因此8倍速多重采样抗锯齿(8xMSAA)的性能得到了大幅提升。

    在上代架构中,由于ROP资源有限,在进行高倍抗锯齿采样的同时还执行渲染后端处理任务时(如SSAO、运动模糊、景深等),效率会非常低下。典型的比如《鹰击长空》、《晴空》等等。

    GF100不仅ROP资源非常丰富,而且可以在DirectCompute 11的帮助下减轻ROP部分的负载,提高执行效率,此时开启高倍抗锯齿就没什么压力了。

将CSAA精度提升至32倍,并优化算法实现更高画质

    解决了8xMSAA效率抵消的问题之后,NVIDIA在此基础上更上一层楼,开放了更高级别的32x CSAA抗锯齿模式,上代精品只能提供16xQ CSAA而且实用性并不高。同时新的抗锯齿模式还优化了“透明覆盖”(Alpha-to-Coverage)采样的算法,实现更高的画质:

    受到API与GPU计算能力的限制,当今的游戏能够渲染的几何图形数量还很有限。树叶的渲染是一个尤其突出的难题。针对叶子的一种常用技术就是创建一个包含许多树叶的透明纹理模版,利用“透明覆盖”来除去树叶之间的缝隙。覆盖采样的数量决定了边缘的画质。如果只有四个覆盖或八个采样,那么将会出现非常糟糕的锯齿以及镶边现象,尤其是在纹理靠近屏幕的时候。采用32倍速覆盖采样抗锯齿(CSAA),GPU共有32个覆盖采样,从而最大限度减少了镶边效果。

32x CSAA相比8x MSAA性能损失并不大,非常值得一试

    透明多重采样(TMAA)也能够从CSAA中获益匪浅。由于“透明覆盖”不在DirectX 9 API当中,所以DirectX 9游戏无法直接使用“透明至覆盖”。而TMAA恰恰对这样的游戏有所帮助。取而代之的是,它们采用了一种叫做“透明测试”的技术,该技术能够为透明纹理产生硬边缘。TMAA能够转换DirectX 9应用程序中旧的着色器代码,使其能够使用“透明覆盖”。而“透明覆盖”与CSAA相结合,能够生成大幅提升的图像质量。

0人已赞
第1页:千呼万唤始出来 GTX480/470终于降临第2页:DX10.0大革命:画面很完美、但速度很慢第3页:DX10.1小修补:片面追求画面行不通第4页:DX11时代来临:为高效率游戏而生第5页:DX11特性解读:Shader Model 5.0第6页:DX11特性解读:多线程处理第7页:DX11特性解读:两种新的纹理压缩格式第8页:Tessellation:ATI原创技术但孤掌难鸣第9页:Tessellation:细分曲面的原理第10页:Tessellation:DX11中的改进第11页:Tessellation的妙用:虚假贴图终结者第12页:Tessellation的妙用:随风飘扬的旗帜第13页:Tessellation的妙用:波澜壮阔的水面第14页:Tessellation的妙用:不可思议的长发第15页:DirectCompute与Stream/CUDA/OpenCL第16页:DirectCompute 10/11版本间的区别第17页:DirectCompute11的妙用:顺序无关透明第18页:DirectCompute11的妙用:电影级景深第19页:DirectCompute11的妙用:高清晰环境光第20页:GF100图形架构:绝非新品装旧酒第21页:GF100图形架构:芯片图与架构图第22页:GF100图形架构:居然是四核心GPU第23页:GF100图形架构:强大的多形体引擎第24页:GF100图形架构:第三代流处理器第25页:GF100图形架构:纹理单元不升反降?第26页:GF100图形架构:一级缓存与二级缓存第27页:GF100图形架构:光栅单元与高倍抗锯齿第28页:Fermi计算架构:GPU并行计算历史第29页:Fermi计算架构:完全按照客户需求设计第30页:Fermi计算架构:恐怖的双精度性能第31页:Fermi计算架构:首次支持C++编程第32页:Fermi计算架构:首次支持显存ECC第33页:Fermi计算架构:NVIDIA Nexus开发平台第34页:附加功能增强:PhysX物理加速第35页:增强附加功能:3D立体3屏技术第36页:增强附加功能:光线追踪第37页:GTX400实物对比:造型一点都不夸张第38页:GTX480实物:官方艺术照赏析第39页:GTX470实物:官方艺术照赏析第40页:GTX480实物:外观和散热器实拍图第41页:GTX480实物:全裸拆解与显存解析第42页:GTX480实物:供电模块全解析第43页:GTX470实物:外观与散热器赏析第44页:GTX470实物:全裸拆解与供电解析第45页:首批上市显卡:七彩虹GTX470第46页:Demo解析:8800/GTX200 Demo回顾第47页:Demo解析:Supersonic Sled寓教于乐第48页:Demo解析:Supersonic Sled物理效果第49页:Demo解析:RagingRapidsRide第50页:Demo解析:Island11震撼的水面第51页:Demo解析:Hair不可思议的长发第52页:Demo解析:Design Garage实时光线追踪第53页:测试平台:Core i7 975 + X58豪华配置第54页:DX10理论测试:《3DMark Vantage》第55页:DX11理论测试:《Heaven Benchmark》第56页:DX11游戏:《BattleForge》第57页:DX11游戏:《STALKER:COP》第58页:DX11游戏:《尘埃2》第59页:DX11游戏:《异形大战铁血战士》第60页:DX11游戏:《战地:叛逆联队2》第61页:DX11游戏:《地铁2033》第62页:DX10.1游戏:《孤岛惊魂2》第63页:DX10.1游戏:《鹰击长空》第64页:DX10游戏:《孤岛危机:弹头》第65页:DX9C游戏:《使命召唤:现代战争2》第66页:PhysX游戏:《蝙蝠侠》第67页:微软DX11 SDK:SUBD11第68页:微软DX11 SDK:PN Triangles第69页:NVIDIA Demo:Island11第70页:NVIDIA Demo:Hair第71页:视频转码测试:Badaboom第72页:科学计算测试:Folding Home第73页:温度测试:风扇温控90度开始加速第74页:功耗测试:先准备600W电源吧第75页:测试成绩汇总:GTX480比GTX470强多少第76页:测试成绩汇总:GTX480 PK HD5870第77页:测试成绩汇总:GTX470 PK HD5850第78页:GTX480双卡SLI效率测试第79页:全文总结与展望:DX11争霸赛才刚开始第80页:首批上市GTX480/470显卡及有奖互动

关注我们

泡泡网

手机扫码关注